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CHANGE IN THE SHAPE AND CHARACTERISTICS OF A BURNING BODY IN 

HYPERSONIC FLOW 

S. Yu. Menzhinskii and N. N. Pilyugin UDC 536.46 

The investigation of hypersonic flow around burning models is of interest in order to 
develop a mathematical theory of internal ballistics, to understand the combustion of solid 
fuel as it exists from an engine nozzle, to simulate the physical processes in meteoric phe- 
nomena [i], and to study features of the combustion and detonation of explosive gas mixtures. 
By now, stationary combustion of carbon or materials with carbon thermal protective coatings 
have been rather completely studied [2]. At the same time, no such analysis exists for ma- 
terial with a complex arbitrary chemical composition, and it is necessary to use mainly em- 
pirical data. One problem which has not been investigated is how the surface of a body burns 
in hypersonic motion and how its aerodynamic characteristics change. Results from a ballistic 
range of experiments have been presented [i] on mass removal from rapidly burning models of 
made of pyrotechnic materials and on the hypersonic flow around them. 

Here we find the shape change when spherical or parabolic bodies are burned, and we 
also find the resistance and mass after the hypersonic motion on a ballistic track under the 
same conditions as in [i]. We calculated how the radius of curvature and the lateral area, 
which determines the luminosity of the burning models, changes with time. 

i. Basic Concepts and Assumptions. Today there are a large number of different mecha- 
nisms which explain the combustion of solid fuels of a given composition [3]. A simplified 
combustion model for the solid surface of a pyrotechnic powder is as follows. It is assumed 
that the chemical reaction is initiated by instantaneous ignition of the model in a barrel [4] 
and then proceeds by a very simple method: oxygenated fuel ~ gaseous reaction products. All 
heat going from the reaction zone to the solid phase is sufficient to maintain continuous 
combustion of the thermal flow. It is assumed [3, 4] that the temperature of the burning sur- 
face is constant, that the combustion is one-dimensional and goes layer by layer, and that the 
material is gasified in a narrow zone at the surface. The gas phase is treated as a quasi- 
stationary phase which instantaneously adds to the thermal state of the surface layer. 

According to current ideas, the flow of combustion products which move along the surface 
has a strong effect on the heat and mass transfer. Turbulization of the boundary layer inten- 
sifies the transfer processes and also increases conyective heat transfer, which increases 
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the surface combustion velocity. This phenomenon is called erosive combustion [3, 4]. In 
the standard theories of erosive combustion, there is no way to validate the use of relation- 
ships from the theory of a turbulent non-reacting boundary layer to describe the transfer 
processes in the combustion zone [3]. If the basic characteristics of all the physicochemi- 
cal processes were well known, then it would be possible to calculate the linear combustion 
velocity of the surface as a function of the pressure, temperature, and composition, i.e., 
the velocity of the phase-separation boundary relative to an immobile solid phase. However, 
processes which accompany erosive combustion have not been completely investigated to date 
[3-5]. Therefore an extrapolation formula, which gives the combustion velocity in the form 
[3, 4] 

(1.1) 

is widely used to reduce experimental data on the combustion of powders. Here A and v are 
empirical constants and Pw is the pressure on the surface of the body. 

Experimental data [1] on the radiation from (combustion) gases have been reduced [6] to 
obtain the constants A and ~ which are used below. The combustion velocity (l.1) is limited 
by the reaction rate in the gas phase [4], which provides the thermal flow required[ to main- 
tain continuous combustion. This leads to a constant surface temperature T w equal to the 
material decomposition temperature [4]. For powders, the transformation of the solid mate- 
rial into a gas occurs irreversibly due to the chemical decomposition reaction. The assump- 
tion of a constant surface temperature of the burning material is correct if this reaction 
has large activation energies [3]. Combustion theory in the constant-temperature approxima- 
tion is called the theory of ideal combustion [4]. The combustion process is ideal in the 
sense that a major assumption is made about the decomposition kinetics. 

Evaluations of dimensionless parameters [I, 6] have shown that gaseous products are 
injected rapidly enough (into the combustion zone) from the surface of this material to use 
the asymptotic strong-injection model [7]. In this case the flow in the shock layer can be 
represented by three subregions: nonviscous air flow behind the shock, a nonviscous injection 
region near the surface, and a thin "floating" boundary layer between them. The asymptotic 
solution to the gas dynamic equations in the injection layer and a comparison with numerical 
calculations [6, 7] have shown that the pressure distribution near the surface follows New- 
ton's formula with a high degree of accuracy. The flow structure can change when there is 
heat evolution near the surface; however, hereafter it is assumed that the pressure distri- 
bution does not change it (or changes it only through the change in shape of the burning 
surface). 

2~ ..... Solution to the Equatio n for the Shape Change 0f the Burning Body_:_ Now we examine 
the problem of mass erosion and the change in shape of a three-dimensional body which burns 
at the surface and moves at a hypersonic velocity. We only consider motion at a zero attack 
angle, with no lift or rotation. 

Here the surface of the body is treated as a shear surface, whose shape and motion must 
be found by the solution process. Let x, y, and z be rectangular coordinates, where the z- 
axis points into the oncoming flow. If the equation for the surface is given explicitly z = 
z(x, y, t), then the displacement velocity along the surface normal is given by [8] 

@z 

~t (2.1) 
U n 

1 +  dz '2  Jz 2 1/~" 

E q u a t i o n  ( 2 . 1 )  d e s c r i b e s  t h e  c h a n g e  i n  s h a p e  o f  a b o d y  when v n i s  a known f u n c t i o n  o f  
t h e  b o d y  g e o m e t r y ,  t h e  p h y s i c a l  s u r f a c e  p r o c e s s e s ,  a n d  a n  i n i t i a l  c o n d i t i o n  z = z 0 ( x  , y ,  O) 
a t  t = O. The c o m b u s t i o n  v e l o c i t y  i n  t h e  f o r m  o f  ( 1 . 1 )  i s  an  a d d i t i o n a l  c o n d i t i o n .  

At hypersonic velocities, the pressure distribution for a wide class of bodies in uni- 
form flow are well described by Newton's formula [6, 7] 

2, 
Pw = p~vL (t) n~, ( 2 . 2 )  

(2.3) 

' ~* " ~ ( 2 . 4 )  z x  = -~i' z v  : -~y ' 
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where v~(t) is the velocity of the body, and 9= is the density of the incoming gas flow. By 
s u b s t i t u t i n g  ( 1 . 1 ) ,  t h e  e x p r e s s i o n  f o r  t h e  combus t ion  v e l o c i t y ,  and ( 2 . 3 )  i n t o  Eq. ( 2 . 1 ) ,  we 
o b t a i n  

t 

Oz Oz 
Oz - - ( t  + p2-~lq2)' /z 'V=H(p,q),  T =  A(9oovL(t))Vdt, p =  "~z' q - -  Oy" ( 2 . 5 )  
OT 

o 

Now we examine the solution to Eq. (2.5) in the case where the initial shape is given para- 
metrically: 

t = 0: x = s~, g = sa, z = z o (s~. s~), Po = a%0_7_,' qo = ~s2"~z~ 
I 

Then,  by u s i n g  t h e  method o f  c h a r a c t e r i s t i c s  ( C a u c h y ' s  method)  [ 9 ] ,  we f i n d  an e x p l i c i t  s o l u -  
t i o n  

(! -- 2v) Pn ( i -- Zv) qo 

+ p o )  ' + + (2.6)  

i 

2 .~(r) ZO(31, S2) "[ (~ +_qo @ p~)V4_t/~ . 

Equation (2.6) describes the time-dependent shape change of a three-dimensional body. Now we 
examine more closely the case where the body is axisymmetric, with a surface equation y = 
y(x, t) relative to the initial body shape y = y0(x), where x and y are Cartesian coordinates 
with the origin at the critical point and the Ox-axis pointed into the incoming flow and the 
Oy-axis normal to Ox. Then by the same reasoning we obtain the equation for the time-depen- 
dent shape change of an axisymmetric body: 

t 

@ = q " " ( l  -[-q~)'/"-V=H(q), ~ =  A(p~v~o) dt, q=y~ .  
0 

( 2 . 7 )  

If the initial conditions are specified as 

dg o 
t = O, z = s, y = Yn (s), -77- ----- q~ 

then, by using the method of characteristics, we obtain the explicit solution 

X(S 'T ) :S"~-Tq~  t-q~)v+l/7'~,  _~_(2v@ q~) g (S, T) : y0(S) _~ T . 

We now compute  t h e  r a d i u s  o f  c u r v a t u r e  a t  any  p o i n t  on t h e  body.  
i s  s p e c i f i e d  by t h e  e q u a t i o n  y = y ( x ,  t ) ,  t h e n  

t e 

y (s, t) = y ( z  (s, t), t), y~ = qoz~. 

From (2.9) the radius of curvature is 

I '1  qot 

from which we obtain that at t = 0 

(2.8) 

Because the surface 

( 2 . 9 )  

Ro = + 
l - ~ - t  

Finally the radius of the body takes the form 

1 (2v--t)q~V--2 (2v--q~)dqnl (2.10) n t + 1 : -  n---~ = ~ ~ 3 7 ~  ds �9 

The characteristics of Eq. (2.7) are straight lines. If we introduce ? and ~ - the inclina- 
tion angles to the Ox axis of the initial generatrix of the body and an arbitrary character- 
istic - then, from (2.8), ~ and @ are related: 

t g ~ -  tg~p(2v--i) 
2v -~- tg2q~ 
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Figure 1 shows tan~ as a function of ~ for v = 0.27, 0.4, 1.0, and 3.0 (curves 1-4, 
respectively). The function @ = f(~) at tan ~ = ~ has an extremum of tan ~ = ~[ (2v -- 
l)/4v. The extremum is a maximum for v > 1/2 and a minimum for v < 1/2. 

When v = 1/2, the characteristics Of Eq. (2.7) are parallel to the Ox-axis. Later it 
will be shown that the case v = 1/2 is the critical one for blunt bodies. 

3. Change in the Shape~ the Mass, and the Resistance Coefficient for a Spherical Body. 
All the relationships obtained above are valid for any axisymmetric body. Now we examine the 
particular case where the initial shape is a sphere of initial radius R 0. Then its shape is 
written as 

~Yo 
x 0 (s) = R o (1 - s), ~o (s) = Ro V f - -  ~;, q0 - , " (3.1) 

V ~ -  7 "  

By substituting it into (2.8) we obtain 

z = Re(1 - -  s ) +  rs aV-~ [2v §  - -  2v)s2] . ( 3 . 2 )  

g = R o ~ t - - s  2 + r ( 2 v - - t ) s 2 ~ t  - -  s 2. 

Equation (3.2) describes the time-dependent shape change of the body. Now we find an ex- 
pression for the radius of curvature of the body at any point. To do this we substitute 
Eq. (3.i) into Eq. (2.10): 

R/Ro=l--~[2v(2~'- - I )s~-~+(1--4v~)s~] .  G = r / H 0 .  

At the critical point (s = i) it then follows that 

B / R o = i  + ( 2 v - - t ) ~ .  

F i g u r e  2 shows R/R 0 a s  a f u n c t i o n  o f  s f o r  ~ = 0 . 2  a nd  v a r i o u s  v ' s .  C u r v e s  1 - 4  c o r r e -  
s p o n d s  t o  v = 0 . 2 7 ,  0 . 4 ,  1 . 0 ,  and  3 . 0 .  We n o t e  t h a t  t h e  c h a n g e  i n  t h e  r a d i u s  R ( s )  i s  n o n -  
m o n o t o n i c  f o r  v > 1. 

It can be seen that when v > 1/2, the body at the critical point becomes more blunt as 
time progresses. When v = 1/2, the radius of curvature remains constant, not only at the 
critical point, but also at all others. In this case the body "burns" parallel to itself. 
For a blunt nose we obtain from (3.2) that, as s § 1 and q0 § ~, the time-dependent change 
in its coordinates is x(0, T) = ~. When v > 1/2, the point s = 0 remains invariant with time 
in our coordinate system. If v < 1/2, the position of the point s = 0 does change with time. 

Now we present relationships for the time-dependent change of the head drag coefficient 
CD, which has the form 

C~ = Cp + CR, 

where Cp is the wave-resistance coefficient: 

2~ 8, 
| 2 --I ~ 

o o 

C R i s  t h e  r e a c t i v e - f o r c e  c o e f f i c i e n t ,  i n c l u d i n g  i n j e c t i o n :  
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2~ O, 

~ t 2 -* (O)v~(O)cosOsinOdOdqJ; 
0 0 

F is the variable area of the maximum cross section; and Pw and v w are the velocity and den- 
sity of the injected gases. 

An estimate gives the relationship 

c__~R = ~ = - -  0,01 << t. 
C~ 9v~ 

T h e r e f o r e ,  we s h a l l  a s s u m e  t h a t  C D z Cp. By u s i n g  N e w t o n ' s  f o r m u l a  ( 2 . 2 ) ,  we o b t a i n  

R p 

4~ f YYx 3 dx 
Cp F ~ l -~  y x 

Now we e x a m i n e  t h e  c h a n g e  o f  t h e  b o d y  m a s s  w i t h  t i m e .  
o f  m a s s  we w r i t e  

dMdt - -  i (0lYe)' dF1 ' 
F 1 

( 3 . 3 )  

By using the law of conservation 

where Pl is the density of the body and dF l is an element of surface area of the body. 

By using Eq. (1.1) and Newton's formula for the pressure on the body surface, and then 
going from differentiation with respect to t to differentiation with respect to T, we find 

B 0 

dM ! yg'~2,, 
= - 2 01 (1 + d x  

The formula for the lateral surface area F I as a function of time has the form 

R 0 

( 3 . 4 )  
T 

Now we e x a m i n e  t h r e e  c a s e s  s e p a r a t e l y  ( v  < 1 / 2 ,  v > 1 / 2 ,  a n d  v = 1 / 2 )  a n d  f i n d  t h e  h e a d  
d r a g  c o e f f i c i e n t  a n d  t h e  m a s s  a s  f u n c t i o n s  o f  t i m e .  

1. v > 1 / 2 .  By u s i n g  E q s .  ( 3 . 1 )  a n d  ( 3 . 2 )  a n d  t h e n  c h a n g i n g  t h e  v a r i a b l e  i n t e g r a t i o n  
f r o m  x t o  s i n  Eq.  ( 3 . 3 ) ,  we o b t a i n  

8v --  4 (2v -- t) ~ r 
Cp= l@a ~v+2) i v + l )  + ~  - - "  2 ( 2 v + 2 )  i 2 v + l ) '  a =  Ro 

Here F = ~R 2, because the area of the maximum midsection does not change with time; Cp(0) = 1 

ate=0. 

Now we examine the change in the body mass with time. From Eqs. (3.1) and (3.2), we find 

[ R2 2(2v--I) 2 (2v--~F ~] 
aM -- 2~p~ 0 t6v 2 -  1 36v 2 --  1 dr = ~ + / ~ ~  + T2 . . . .  " 

We integrate this expression over T and divide by M 0 = 2/3~R03pi; then 

M 3o 3 (2v -- t ) ~  2 (2v -- t)'3o .3 
M 0  1 2 v  + I 16@ - -  1 36v ~ - -  1 

T h u s ,  f o r  v > 1 / 2  we o b t a i n  t h e  r e q u i r e d  t i m e - d e p e n d e n t  f u n c t i o n s  f o r  t h e  h e a d  d r a g  c o e f f i -  
c i e n t  a n d  t h e  m a s s .  By a n a l o g o u s  r e a s o n i n g ,  we h a v e  f o r  t h e  a r e a  o f  t h e  l a t e r a l  s u r f a c e  o f  
t h e  b o d y  f r o m  ( 3 . 4 ) :  

F1 - -  1 2o (2v-- I )~  02 , 
FV~ 2 v + l  try z - I  

where F~0 is the surface area at time t = 0. 

2. 9 = 1/2. In this case the equations for the change of body shape take the form 

x = B 0 ( l - - s ) + ~ ,  y = R o f i - - s  2. ( 3 . 5 )  
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Then 

c~ = (~R~/F)(i -- o~). 
The time-dependent change in the radius of the maximum midsection must "be known in order to 
find the final equation for Cp. It is obvious that the body has the largest vertical cross 
section at x = R0 ; in this case the maximum midsection radius at this point is exactly y0, 
which corresponds to x = R o. Now we find this quantity. For x = R o and s = o, it follows 
from Eq. (3.5) that 

= R~ = R~ t -- o ~, 

where R m is the radius of the maximum midsection. Then F = ~R~ = ~R2(I - o2). 

Finally, we obtain 

c~  - 1 + o  2 .. ~ = - - .  
C'p (0) R o 

Now we examine the mass loss from the body surface. By using Eq. (3.5), integrating, and 
then dividing by M0, we finally have 

:v  t + 
M a 

Then we find the area of the lateral surface from Eq. (3.4): 

F,/F~0 = i -- ~. 

3. v < i/2. We transform the integration variable in Eq. (3.3) from x to s using Eqs. 

(3.1) and (3.2). The point x = �9 corresponds to the point s = i, and the point x = R0 cor- 
responds to the point s0(~) , which is the root of the equation 

R o = ~ o ( l - - s ) + ~ s  2 " - ' [ 2 v + ( [ - - % ' ~ s e I ~ .  ~" (3.6) 

Then ,  on t h e  b a s i s  o f  ( 3 . 3 ) ,  we o b t a i n  

c~<01 - - 7 . [  t - 4 ( ~ ) +  ~ ( ~ , , - , ~ [ ~ ( ~ -  (~ ) ) -  

,,4~ ( i - a o  <~ +"<~(2,,-~)~ ~ ( / - . , , o  (0) >.+t  

where F is the maximum midsection area, and R 0 
late the change in mass analogously: 

dM 2ap, [ n~ ( ~"+' ' 
- t-,0 (~))-< ~: L:2,, + t 

is the body radius at time t = 0. 

k 

(3.7) 

We calcu- 

~v2v-~(1-4v-l(J ~r . (2 ,_ l )~W+~(l_ ,  ~ (~)) ~-~(1-~0 (j 
We c a n n o t  f i n d  t h e  e x p l i c i t  f u n c t i o n  s 0 ( z )  v s .  z r e q u i r e d  t o  i n t e g r a t e  Eq, ( 3 . 8 ) ,  so  we a t -  
t e m p t  t o  f i n d  an  a p p r o x i m a t i o n .  To do t h i s  we e x a m i n e  Eq. ( 3 . 6 )  a t  s = s o :  

R0 = ~ [2vs ~-~ + ( 1 -- 2v) ,..2~]. 

The second term on the  r i g h t  s i de  of  t h i s  equa t i on  i s  smal l  compared to  the  f i r s t ,  so we 
n e g l e c t  i t :  

~o = ~2vs -~-~, .~0(T) =(2vo)~/<~->' (3.9) 
By substituting (3.9) into Eq. (3.7), we have 

cp ~ [t (2v~) ~m-~ "(~ + I i ,  

By replacing s0(~) in (3.8) by its value from (3.9) and integrating, we obtain 

M - - i - - 3 [  t ( (2v)('av+l)/("--2v)(2--2;')~a/("--~'v))_ I_ 
M o ~ (~-- 3 

n- (2v-- "I~ \~ 5 o51(2_2v) 2v "o 2 (2v)<4v-~)l(2-.~v)(2_ 2v) ~jal(.~-.~v) + 
4v-- 1 ~ 3 
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The time-dependent variation of the maximum-midsection area must be known in order to find 
the final time-dependent function for the head drag coefficient. It follows from Eq. (3.9) 
that 

X=Ho,  s = ( 2 v o )  '/(2-2~), y = ( R o + T ( 2 V - - I ) S 2 ~ ) ~ I - - s  2. 

Because the quantity ~(2v - l)s :v is an order of magnitude smaller than R0, we can write 

Then 

Finally we have from (3.10) that 

F ------ ~n2t ~ n 2 ( l  (O\U) I/(l-vl) 

c~, Iv + t (i -- {2vz) <'+z)/(~-~)) 
cp (0) = I + (2v~) ~/<~-~) + z (Sv - -  4) ~, -t- 2 (i -- (2vo) ~/(~-v)) - -  

'r -i- t ~ (I ~ ~ - -  (2vo) <v+1)/<I-')) ~'] 4- 2a2 (2v - -  I)~ [2v + 212v-F t (I (-I~~-- (2vo~ ~2V+-~)/(1-v)) 2v+12v (t " ~ - - - - ~ - -  (2vo) (~v+l)/r "} 

By analogous reasoning, we obtain 

f_t = __ (2vo)'/(2-2v) + cT [2v((2vo$12"-I)/<2-2v> __ I ) -  (2v--l)(2v+ 2~ ((2v0)<2,,+i)/(2-~,o 1)I + 
F o 2v-F 1 

. 2 (2v --  1) 2 4v~2~ ((2vz)<4,,-~>/<~-.~) - -  t )  --  4v +----7 

for the surface area of the maximum midsection. 

Thus we find the head drag coefficient, the frontal surface area, and the mass of the 
body as functions of time for any v. 

4. Calculated Results. We now examine the results of calculations using the formulas 
presented above. Figure 3 shows the change in the shape of an originally spherical body 
(curve I) for various combustion laws with A = (2.48 cm/sec)/(l.013"10 s Pa) v (curves 2-4 for 
v = 1.0, 0.5, and 0.27). Curves 2-4 were constructed for o = 0.4, i.e., for the moment in 
time when the model reaches the end of the track [i]. It can be seen that a change in v has 
a strong effect on the change of the lateral surface of the body near the maximum midsection. 

Now we examine the case where the body has the shape of a parabola at time t = O: 

x o = s ,  yo(s)= 2p~ ll2, qo =ps  -v2. 
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The solution to the equation for the body shape change has the form 

Tp2V-l(2vs+ p2) p~si/2(2v - i) ~ 
X(s,t)=s__ ~ , y(s, t)=2ps ~/2+T (s+p~)~+t/~" 

The radius of curvature at any point of the body is 

R __i +T  (2v--t) p~V-1, (i/2p ~_vs) 
R-~ - -  (p~ + W t  ~+~ ' 

F i g u r e  4 shows t h e  shape  change  o f  a body which  o r i g i n a l l y  i s  a p a r a b o l a  ( c u r v e  I ) :  

y/Ro=O,5Yx/Bo, 

Curves  2-4  in  F i g .  4 c o r r e s p o n d  to  v = 1 . 0 ,  0 . 5 ,  and 0 .27  and a = 0 . 2 .  Ana logous  ( d a s h e d )  
c u r v e s  were c a l c u l a t e d  f o r  an i n i t i a l  p a r a b o l a  w i t h  t h e  e q u a t i o n  

y/Ro = 2~x/R~. 

Comparison of the calculations of y(x, t) shows that the change in v has a stronger effect 
on the shape change of a thinner body than a thicker one. 

Figure 5 shows calculations of the change in the wave-resistance coefficient of an ini- 
tially spherical body as a function of the dimensionless time o. Curves 1-3 correspond to 
v = 1.0, 0.5, and 0.27. It can be seen that the coefficient Cp depends strongly on ~ in 
the combustion equation. 

Thus, the calculations show that v is an important parameter in the shape change of a 
burning body. The value of v can be established for a given material by analyzing photo- 
graphs of the burning body at various times or else from the deceleration law for the body 
from the change in the coefficient Cp. 
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